跳至主要內容

学习数据结构前的必会知识

red-velet原创计算机基础数据结构和算法约 2979 字大约 10 分钟

一、前置扫盲

1、数据结构分类

1.1 逻辑结构:线性与非线性

tip:逻辑结构揭示了数据元素之间的逻辑关系

  • 线性数据结构:元素间存在明确的顺序关系。

    1. 数据按照一定顺序排列,其中元素之间存在一个对应关系,使得它们按照线性顺序排列。
    2. 每个元素都有且仅有一个前驱元素和一个后继元素,除了第一个和最后一个元素外。
    3. 代表:数组、链表、栈、队列、哈希表。
  • 非线性数据结构:元素不是按照序列排列的

    • 元素之间存在多对多的关系,其组织方式不受固定顺序的限制。
    • 非线性数据结构中的元素不是按照序列排列的。
    • 代表:树、堆、图、哈希表。

图例

常见线性数据结构和非线性数据结构
常见线性数据结构和非线性数据结构

1.2 物理结构:顺序与链式

tip:所有数据结构都是基于数组、链表或二者的组合实现的

  • 连续空间存储(顺序)
    1. 特点:数据元素存储在物理空间上是连续的,通过元素的物理地址和相对位置来访问数据。
    2. 优缺点:
      • 优点: 随机访问速度快,存储效率高。
      • 缺点: 插入和删除操作可能涉及大量数据的移动,且需要预先分配连续的内存空间。
    3. 代表:基于数组可实现:栈、队列、哈希表、树、堆、图、矩阵、张量(维度 ≥3 的数组)等。
  • 分散空间存储(链式)
    1. 特点:数据元素存储在物理空间上是分散的,通过指针来连接各个元素。
    2. 优缺点:
      • 优点: 插入和删除操作相对容易,不需要连续的内存空间。
      • 缺点: 不支持快速的随机访问,需要遍历才能找到特定位置的元素。
    3. 代表:基于链表可实现:栈、队列、哈希表、树、堆、图等。

图例

顺序存储和分散存储
顺序存储和分散存储

2、算法效率评估

tip:算法的效率主要评估的是时间和空间,名词称为-时间复杂度和空间复杂度,但是不是统计具体的算法运行时间和使用空间,而是统计算法运行时间和使用空间随着数据量变大时的增长趋势,使用大O计数法表示

2.1 时间复杂度

例子:下列一段代码,分别使用两种方式统计时间复杂度。

void algorithm(int n) {
    int a = 2;  
    a = a + 1;  
    a = a * 2;  
    for (int i = 0; i < n; i++) {  
        System.out.println(0);     
    }
}
2.1.1 统计具体时间
  1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
  2. 评估各种计算操作所需的运行时间,假如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 5 ns 等。
  3. 统计代码中所有的计算操作,并将所有操作的执行时间求和,从而得到运行时间。
// 在某运行平台下
void algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // 循环 n 次
    for (int i = 0; i < n; i++) {  // 1 ns ,每轮都要执行 i++
        System.out.println(0);     // 5 ns
    }
}

根据以上方法,可以得到算法的运行时间为 (6n+12) ns

统计算法的运行时间既不合理也不现实

  1. 预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。
  2. 很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
2.1.2 统计增长趋势

“时间增长趋势(是算法运行时间随着数据量变大时的增长趋势)”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 n ,给定三个算法 ABC

// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
    System.out.println(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        System.out.println(0);
    }
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        System.out.println(0);
    }
}
A、B、C的时间增长趋势图
A、B、C的时间增长趋势图
  • 算法 A 只有 1 个打印操作,算法运行时间不随着 n增大而增长。我们称此算法的时间复杂度为“常数阶”。
  • 算法 B 中的打印操作需要循环 n 次,算法运行时间随着 n 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。
  • 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小n 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶

相较于直接统计算法的运行时间,时间复杂度的特点:

  • 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 n>1 时比算法 A 更慢,在n>1000000时比算法 C 更慢。事实上,只要输入数据大小 n 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。
  • 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
  • 时间复杂度也存在一定的局限性。例如,尽管算法 AC 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 n 较小时,算法 B 明显优于算法 C 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。

具体计算方式:使用函数T(n)演变为O(n)表示。

void algorithm(int n) {//每次调用函数执行的次数
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // 循环 n 次
    for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
        System.out.println(0);    // +1
    }
}

设算法的操作数量是一个关于输入数据大小 n 的函数,记为T(n),则以上函数的操作数量为

T(n)=3+2n T(n)=3+2n

T(n)是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶,我们将线性阶的时间复杂度记为O(n),这个数学符号称为「大O记号big-O notationJ,表示函数T(n)的「渐近上界asymptotic upper bound」。

  • 代码的时间复杂度:线性阶时间复杂度
  • 函数表示:T(n)=3+2n
  • 线性阶表示:O(3+2n)
    • 输入的n不受控制,可以为任意数,而时间复杂度是很难计算准确的,所以统计的为最差情况的时间复杂度。
    • 假如输入n的数趋近于∞(无穷),那么常数3可以忽略,同理系数2也可以忽略,无穷和2倍无穷不还是无穷吗
    • 所以最终时间复杂度表示为:O(n)

总结:

计数简化技巧:

  1. 忽略T(n) 中的常数项。因为它们都与 n 无关,所以对时间复杂度不产生影响。
  2. 省略所有系数。例如,循环 2n 次、5n+1 次等,都可以简化记为 n 次,因为 n前面的系数对时间复杂度没有影响。
  3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 1. 点和第 2. 点的技巧。
  4. 最差情况判断:当输入数最差情况为n,趋近于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。
void algorithm(int n) {
    int a = 1;  // +1
    a = a + n;  // +1
    // +5n
    for (int i = 0; i < 5 * n + 1; i++) {
        System.out.println(0);
    }
    // +2n
    for (int i = 0; i < 2 * n; i++) {
        //加n+1
        for (int j = 0; j < n + 1; j++) {
            System.out.println(0);
        }
    }
}

函数表示:T(n)=2+5n+2n(n+1)=2n2+7n+3 \text{函数表示:}T(n)=2+5n+2n(n+1)=2n^2+7n+3

当n->n2次方为主导,除去常数、系数、非主导项使用大O计数法表示:O(n2) \text{当n->}\infty\text{,}n^2\text{次方为主导,除去常数、系数、非主导项使用大O计数法表示:} O(n^2)


拓展:常见大O类型和图例

时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(2n)<O(n!) \text{时间复杂度:}O(1) < O(logn)<O(n)<O(nlogn)<O(n^2)<O(2^n)<O(n!)

时间复杂度:常数 阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶 \text{时间复杂度:常数 阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶}

常见大O类型和图例
常见大O类型和图例
  • 线性阶的操作数量相对于输入数据大小 n以线性级别增长。线性阶通常出现在单层循环中
  • 平方阶的操作数量相对于输入数据大小 n 以平方级别增长。平方阶通常出现在嵌套循环中
  • 生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 1 个细胞,分裂一轮后变为 2 个,分裂两轮后变为 4 个,以此类推,分裂 n 轮后有 2^n 个细胞,指数阶常出现于递归函数中。
  • 对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 n ,由于每轮缩减到一半,因此循环次数是 log2⁡n ,即 2^n 的反函数。
    • time_complexity_logarithmic
      time_complexity_logarithmic
  • 线性对数阶常出现于嵌套循环中
  • 阶乘阶对应数学上的“全排列”问题。给定 n 个互不重复的元素,求其所有可能的排列方案,方案数量为n!,常用于回溯。

2.2 空间复杂度

tip:现在很发达了,内存没以前贵,直接跳过此处

「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。

暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。